Inhibition of Acid-Enhanced Elongation of Zea mays Root Segments by Galactose.
نویسندگان
چکیده
The effect of sugars and metabolic inhibitors on the elongation of Zea mays root segments was analyzed by a rhizometer which records the elongation of each of 32 root segments at the same time. Galactose suppressed the acid-enhanced rapid elongation after a lag period of 1.5 hours, but it did not inhibit the slow elongation at pH 7. Mannose was less inhibitory than galactose. Arabinose, xylose, glucose, sucrose, mannitol, and sorbitol caused no inhibition. When galactose was removed after a 1-hour treatment, the elongation was partially recovered. Cycloheximide and 2-deoxyglucose suppressed acid-enhanced elongation when these were applied at the same time as acid treatments, whereas cordycepin (3'-deoxyadenosine) inhibited elongation only if it was applied prior to acid treatment. Over the 9-hour period of elongation studied, the inhibition by galactose was comparable to that of cycloheximide. Since galactose has been reported to suppress the sugar metabolism necessary for the cell wall synthesis, the later phase of acid-enhanced elongation of root segments may at least partially depend on the synthesis or metabolism of cell wall components. The inhibition of root growth by galactose may be partially ascribed to a direct effect on the elongation process in roots, an effect that is enhanced by the acidification of the cell walls.
منابع مشابه
Some aspects of the control of root growth and georeaction: the involvement of indoleacetic Acid and abscisic Acid.
Apical segments of roots of Zea mays L. cv. Orla and cv. Anjou show a strong georeaction during 7 hours geostimulation. This is abolished by detipping the segments and restored by replacing the tips upon the apical cut surfaces. After exodiffusion of endogenous indoleacetic acid (IAA) the retipped segments showed a significantly lower geocurvature. Application of low concentrations of IAA to th...
متن کاملLight and decapitation effects on in vitro rooting in maize root segments.
The effects of white light and decapitation on the initiation and subsequent emergence and elongation of lateral roots of apical maize (Zea mays L. cv LG 11) root segments have been examined. The formation of lateral root primordium was inhibited by the white light. This inhibition did not depend upon the presence of the primary root tip. However, root decapitation induced a shift of the site o...
متن کاملAbscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production.
Previous work showed that primary root elongation in maize (Zea mays L.) seedlings at low water potentials (psi(w)) requires the accumulation of abscisic acid (ABA) (R.E. Sharp, Y. Wu, G.S. Voetberg, I.N. Saab, M.E. LeNoble [1994] J Exp Bot 45: 1743-1751). The objective of the present study was to determine whether the inhibition of elongation in ABA-deficient roots is attributable to ethylene....
متن کاملAbscisic Acid stimulates elongation of excised pea root tips.
Excised Pisum sativum L. root tips were incubated in a pH 5.2 sucrose medium containing abscisic acid. Elongation growth was inhibited by 100 mum abscisic acid. However, decreasing the abscisic acid concentration caused stimulation of elongation, the maximum response (25% to 30%) occurring at 1 mum abscisic acid. Prior to two hours, stimulation of elongation by 1 mum abscisic acid was not detec...
متن کاملNitric oxide is involved in nitrate-induced inhibition of root elongation in Zea mays.
BACKGROUND AND AIMS Root growth and development are closely dependent upon nitrate supply in the growth medium. To unravel the mechanism underlying dependence of root growth on nitrate, an examination was made of whether endogenous nitric oxide (NO) is involved in nitrate-dependent growth of primary roots in maize. METHODS Maize seedlings grown in varying concentrations of nitrate for 7 d wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 90 2 شماره
صفحات -
تاریخ انتشار 1989